Huge potential in hydro-solar hybrids, says new research

30 September 2020


Combining hydropower plants with floating solar panels could produce a significant portion of the electricity generated annually across the globe, with almost 380,000 freshwater hydropower reservoirs boasting potential to host solar tehnology, analysis by researchers at the US Department of Energy’s National Renewable Energy Laboratory (NREL) suggests.

The researchers say that adding floating solar panels to bodies of water that are already home to hydropower stations could produce as much as 7.6 terawatts of potential power a year from the solar PV systems alone, or about 10,600?terawatt-hours of potential annual generation. Those figures do not include the amount generated from hydropower.

For comparison, global final electricity consumption was just over 22,300 terawatt-hours in 2018, the most recent year for which statistics are available, according to the International Energy Agency.

“This is really optimistic,” said Nathan Lee, a researcher with NREL’s Integrated Decision Support group and lead author of a new paper published in the journal Renewable Energy. “This does not represent what could be economically feasible or what the markets could actually support. Rather, it is an upper-bound estimate of feasible resources that considers waterbody constraints and generation system performance.”

The article, “Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential,” was co-authored by NREL colleagues Ursula Grunwald, Evan Rosenlieb, Heather Mirletz, Alexandra Aznar, Robert Spencer, and Sadie Cox.

NREL estimates 379,068 freshwater hydropower reservoirs could host combined floating PV sites with existing hydropower facilities. Additional siting data is needed prior to any implementation because some reservoirs may be dry during parts of the year or may not be otherwise conducive to hosting floating PV.

Potential benefits exist by coupling floating PV with hydropower. For example, a hybrid system would reduce transmission costs by linking to a common substation. Additionally, the two technologies can balance each other. The greatest potential for solar power is during dry seasons, while for hydropower rainy seasons present the best opportunity. Under one scenario, that means operators of a hybrid system could use pumped storage hydropower to store excess solar generation.

Funding for the research came from NREL’s Laboratory Directed Research and Development Program.



Privacy Policy
We have updated our privacy policy. In the latest update it explains what cookies are and how we use them on our site. To learn more about cookies and their benefits, please view our privacy policy. Please be aware that parts of this site will not function correctly if you disable cookies. By continuing to use this site, you consent to our use of cookies in accordance with our privacy policy unless you have disabled them.